Advanced engineering mathematics (Record no. 205)

MARC details
000 -LEADER
fixed length control field 12175nam a22002537a 4500
003 - CONTROL NUMBER IDENTIFIER
control field MU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220803043306.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220803b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780470646137
Terms of availability Tzs 150,000/=
040 ## - CATALOGING SOURCE
Original cataloging agency MU Library
Language of cataloging MU Library
Transcribing agency MU Library
Modifying agency MU Library
Description conventions AACR
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA401
Item number 1
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 22
Classification number 510.2462 KRE
Item number 1
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Kreyszig, Erwin
245 ## - TITLE STATEMENT
Title Advanced engineering mathematics
Statement of responsibility, etc. / Erwin, Kreyszig; E. J.; Norminton, and Herbert Kreyszig,
250 ## - EDITION STATEMENT
Edition statement 10th ed.
Remainder of edition statement International students edition
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Hoboken, N.J. : Wiley,
Name of publisher, distributor, etc. : Chichester : John Wiley [distributor]
Date of publication, distribution, etc. 2011.
300 ## - PHYSICAL DESCRIPTION
Extent xv,1001p.:
Other physical details ill.;( chiefly colour) ;
Dimensions 28cm.
501 ## - WITH NOTE
With note FEATURES<br/>Simplicity of Examples: To make the book teachable, why choose complicated examples when well-written simple ones are as instructive or even better?<br/>Independence of Chapters: To provide flexibility in tailoring courses to special needs.<br/>Self-Contained Presentation: Except for a few clearly marked places where a proof would exceed the level of the book and a reference is given instead.<br/>Modern Standard Notation: To help students with other courses, modern books, and mathematical and engineering journals.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note PART A Ordinary Differential Equations (ODEs) 1<br/><br/>CHAPTER 1 First-Order ODEs 2<br/><br/>1.1 Basic Concepts. Modeling 2<br/><br/>1.2 Geometric Meaning of y ƒ(x, y). Direction Fields, Euler’s Method 9<br/><br/>1.3 Separable ODEs. Modeling 12<br/><br/>1.4 Exact ODEs. Integrating Factors 20<br/><br/>1.5 Linear ODEs. Bernoulli Equation. Population Dynamics 27<br/><br/>1.6 Orthogonal Trajectories. Optional 36<br/><br/>1.7 Existence and Uniqueness of Solutions for Initial Value Problems 38<br/><br/>CHAPTER 2 Second-Order Linear ODEs 46<br/><br/>2.1 Homogeneous Linear ODEs of Second Order 46<br/><br/>2.2 Homogeneous Linear ODEs with Constant Coefficients 53<br/><br/>2.3 Differential Operators. Optional 60<br/><br/>2.4 Modeling of Free Oscillations of a Mass–Spring System 62<br/><br/>2.5 Euler–Cauchy Equations 71<br/><br/>2.6 Existence and Uniqueness of Solutions. Wronskian 74<br/><br/>2.7 Nonhomogeneous ODEs 79<br/><br/>2.8 Modeling: Forced Oscillations. Resonance 85<br/><br/>2.9 Modeling: Electric Circuits 93<br/><br/>2.10 Solution by Variation of Parameters 99<br/><br/>CHAPTER 3 Higher Order Linear ODEs 105<br/><br/>3.1 Homogeneous Linear ODEs 105<br/><br/>3.2 Homogeneous Linear ODEs with Constant Coefficients 111<br/><br/>3.3 Nonhomogeneous Linear ODEs 116<br/><br/>CHAPTER 4 Systems of ODEs. Phase Plane. Qualitative Methods 124<br/><br/>4.0 For Reference: Basics of Matrices and Vectors 124<br/><br/>4.1 Systems of ODEs as Models in Engineering Applications 130<br/><br/>4.2 Basic Theory of Systems of ODEs. Wronskian 137<br/><br/>4.3 Constant-Coefficient Systems. Phase Plane Method 140<br/><br/>4.4 Criteria for Critical Points. Stability 148<br/><br/>4.5 Qualitative Methods for Nonlinear Systems 152<br/><br/>4.6 Nonhomogeneous Linear Systems of ODEs 160<br/><br/>CHAPTER 5 Series Solutions of ODEs. Special Functions 167<br/><br/>5.1 Power Series Method 167<br/><br/>5.2 Legendre's Equation. Legendre Polynomials Pn(x) 175<br/><br/>5.3 Extended Power Series Method: Frobenius Method 180<br/><br/>5.4 Bessel’s Equation. Bessel Functions (x) 187<br/><br/>5.5 Bessel Functions of the Y (x). General Solution 196<br/><br/>CHAPTER 6 Laplace Transforms 203<br/><br/>6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting) 204<br/><br/>6.2 Transforms of Derivatives and Integrals. ODEs 211<br/><br/>6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting) 217<br/><br/>6.4 Short Impulses. Dirac's Delta Function. Partial Fractions 225<br/><br/>6.5 Convolution. Integral Equations 232<br/><br/>6.6 Differentiation and Integration of Transforms. ODEs with Variable Coefficients 238<br/><br/>6.7 Systems of ODEs 242<br/><br/>6.8 Laplace Transform: General Formulas 248<br/><br/>6.9 Table of Laplace Transforms 249<br/><br/>PART B Linear Algebra. Vector Calculus 255<br/><br/>CHAPTER 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 256<br/><br/>7.1 Matrices, Vectors: Addition and Scalar Multiplication 257<br/><br/>7.2 Matrix Multiplication 263<br/><br/>7.3 Linear Systems of Equations. Gauss Elimination 272<br/><br/>7.4 Linear Independence. Rank of a Matrix. Vector Space 282<br/><br/>7.5 Solutions of Linear Systems: Existence, Uniqueness 288<br/><br/>7.6 For Reference: Second- and Third-Order Determinants 291<br/><br/>7.7 Determinants. Cramer’s Rule 293<br/><br/>7.8 Inverse of a Matrix. Gauss–Jordan Elimination 301<br/><br/>7.9 Vector Spaces, Inner Product Spaces. Linear Transformations. Optional 309<br/><br/>CHAPTER 8 Linear Algebra: Matrix Eigenvalue Problems 322<br/><br/>8.1 The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors 323<br/><br/>8.2 Some Applications of Eigenvalue Problems 329<br/><br/>8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices 334<br/><br/>8.4 Eigenbases. Diagonalization. Quadratic Forms 339<br/><br/>8.5 Complex Matrices and Forms. Optional 346<br/><br/>CHAPTER 9 Vector Differential Calculus. Grad, Div, Curl 354<br/><br/>9.1 Vectors in 2-Space and 3-Space 354<br/><br/>9.2 Inner Product (Dot Product) 361<br/><br/>9.3 Vector Product (Cross Product) 368<br/><br/>9.4 Vector and Scalar Functions and Their Fields. Vector Calculus: Derivatives 375<br/><br/>9.5 Curves. Arc Length. Curvature. Torsion 381<br/><br/>9.6 Calculus Review: Functions of Several Variables. Optional 392<br/><br/>9.7 Gradient of a Scalar Field. Directional Derivative 395<br/><br/>9.8 Divergence of a Vector Field 403<br/><br/>9.9 Curl of a Vector Field 406<br/><br/>CHAPTER 10 Vector Integral Calculus. Integral Theorems 413<br/><br/>10.1 Line Integrals 413<br/><br/>10.2 Path Independence of Line Integrals 419<br/><br/>10.3 Calculus Review: Double Integrals. Optional 426<br/><br/>10.4 Green’s Theorem in the Plane 433<br/><br/>10.5 Surfaces for Surface Integrals 439<br/><br/>10.6 Surface Integrals 443<br/><br/>10.7 Triple Integrals. Divergence Theorem of Gauss 452<br/><br/>10.8 Further Applications of the Divergence Theorem 458<br/><br/>10.9 Stokes’s Theorem 463<br/><br/>PART C Fourier Analysis. Partial Differential Equations (PDEs) 473<br/><br/>CHAPTER 11 Fourier Analysis 474<br/><br/>11.1 Fourier Series 474<br/><br/>11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions 483<br/><br/>11.3 Forced Oscillations 492<br/><br/>11.4 Approximation by Trigonometric Polynomials 495<br/><br/>11.5 Sturm–Liouville Problems. Orthogonal Functions 498<br/><br/>11.6 Orthogonal Series. Generalized Fourier Series 504<br/><br/>11.7 Fourier Integral 510<br/><br/>11.8 Fourier Cosine and Sine Transforms 518<br/><br/>11.9 Fourier Transform. Discrete and Fast Fourier Transforms 522<br/><br/>11.10 Tables of Transforms 534<br/><br/>CHAPTER 12 Partial Differential Equations (PDEs) 540<br/><br/>12.1 Basic Concepts of PDEs 540<br/><br/>12.2 Modeling: Vibrating String, Wave Equation 543<br/><br/>12.3 Solution by Separating Variables. Use of Fourier Series 545<br/><br/>12.4 D’Alembert’s Solution of the Wave Equation. Characteristics 553<br/><br/>12.5 Modeling: Heat Flow from a Body in Space. Heat Equation 557<br/><br/>12.6 Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. Dirichlet Problem 558<br/><br/>12.7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms 568<br/><br/>12.8 Modeling: Membrane, Two-Dimensional Wave Equation 575<br/><br/>12.9 Rectangular Membrane. Double Fourier Series 577<br/><br/>12.10 Laplacian in Polar Coordinates. Circular Membrane. Fourier–Bessel Series 585<br/><br/>12.11 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential 593<br/><br/>12.12 Solution of PDEs by Laplace Transforms 600<br/><br/>PART D Complex Analysis 607<br/><br/>CHAPTER 13 Complex Numbers and Functions. Complex Differentiation 608<br/><br/>13.1 Complex Numbers and Their Geometric Representation 608<br/><br/>13.2 Polar Form of Complex Numbers. Powers and Roots 613<br/><br/>13.3 Derivative. Analytic Function 619<br/><br/>13.4 Cauchy–Riemann Equations. Laplace’s Equation 625<br/><br/>13.5 Exponential Function 630<br/><br/>13.6 Trigonometric and Hyperbolic Functions. Euler's Formula 633<br/><br/>13.7 Logarithm. General Power. Principal Value 636<br/><br/>CHAPTER 14 Complex Integration 643<br/><br/>14.1 Line Integral in the Complex Plane 643<br/><br/>14.2 Cauchy's Integral Theorem 652<br/><br/>14.3 Cauchy's Integral Formula 660<br/><br/>14.4 Derivatives of Analytic Functions 664<br/><br/>CHAPTER 15 Power Series, Taylor Series 671<br/><br/>15.1 Sequences, Series, Convergence Tests 671<br/><br/>15.2 Power Series 680<br/><br/>15.3 Functions Given by Power Series 685<br/><br/>15.4 Taylor and Maclaurin Series 690<br/><br/>15.5 Uniform Convergence. Optional 698<br/><br/>CHAPTER 16 Laurent Series. Residue Integration 708<br/><br/>16.1 Laurent Series 708<br/><br/>16.2 Singularities and Zeros. Infinity 714<br/><br/>16.3 Residue Integration Method 719<br/><br/>16.4 Residue Integration of Real Integrals 725<br/><br/>CHAPTER 17 Conformal Mapping 735<br/><br/>17.1 Geometry of Analytic Functions: Conformal Mapping 736<br/><br/>17.2 Linear Fractional Transformations (Möbius Transformations) 741<br/><br/>17.3 Special Linear Fractional Transformations 745<br/><br/>17.4 Conformal Mapping by Other Functions 749<br/><br/>17.5 Riemann Surfaces. Optional 753<br/><br/>CHAPTER 18 Complex Analysis and Potential Theory 756<br/><br/>18.1 Electrostatic Fields 757<br/><br/>18.2 Use of Conformal Mapping. Modeling 761<br/><br/>18.3 Heat Problems 765<br/><br/>18.4 Fluid Flow 768<br/><br/>18.5 Poisson's Integral Formula for Potentials 774<br/><br/>18.6 General Properties of Harmonic Functions. Uniqueness Theorem for the Dirichlet Problem 778<br/><br/>PART E Numeric Analysis 785<br/><br/>Software 786<br/><br/>CHAPTER 19 Numerics in General 788<br/><br/>19.1 Introduction 788<br/><br/>19.2 Solution of Equations by Iteration 795<br/><br/>19.3 Interpolation 805<br/><br/>19.4 Spline Interpolation 817<br/><br/>19.5 Numeric Integration and Differentiation 824<br/><br/>CHAPTER 20 Numeric Linear Algebra 841<br/><br/>20.1 Linear Systems: Gauss Elimination 841<br/><br/>20.2 Linear Systems: LU-Factorization, Matrix Inversion 849<br/><br/>20.3 Linear Systems: Solution by Iteration 855<br/><br/>20.4 Linear Systems: Ill-Conditioning, Norms 861<br/><br/>20.5 Least Squares Method 869<br/><br/>20.6 Matrix Eigenvalue Problems: Introduction 873<br/><br/>20.7 Inclusion of Matrix Eigenvalues 876<br/><br/>20.8 Power Method for Eigenvalues 882<br/><br/>20.9 Tridiagonalization and QR-Factorization 885<br/><br/>CHAPTER 21 Numerics for ODEs and PDEs 897<br/><br/>21.1 Methods for First-Order ODEs 898<br/><br/>21.2 Multistep Methods 908<br/><br/>21.3 Methods for Systems and Higher Order ODEs 912<br/><br/>21.4 Methods for Elliptic PDEs 919<br/><br/>21.5 Neumann and Mixed Problems. Irregular Boundary 928<br/><br/>21.6 Methods for Parabolic PDEs 933<br/><br/>21.7 Method for Hyperbolic PDEs 939<br/><br/>PART F Optimization, Graphs 947<br/><br/>CHAPTER 22 Unconstrained Optimization. Linear Programming 948<br/><br/>22.1 Basic Concepts. Unconstrained Optimization: Method of Steepest Descent 949<br/><br/>22.2 Linear Programming 952<br/><br/>22.3 Simplex Method 956<br/><br/>22.4 Simplex Method: Difficulties 960<br/><br/>CHAPTER 23 Graphs. Combinatorial Optimization 967<br/><br/>23.1 Graphs and Digraphs 967<br/><br/>23.2 Shortest Path Problems. Complexity 972<br/><br/>23.3 Bellman's Principle. Dijkstra’s Algorithm 977<br/><br/>23.4 Shortest Spanning Trees: Greedy Algorithm 980<br/><br/>23.5 Shortest Spanning Trees: Prim’s Algorithm 984<br/><br/>23.6 Flows in Networks 987<br/><br/>23.7 Maximum Flow: Ford–Fulkerson Algorithm 993<br/><br/>23.8 Bipartite Graphs. Assignment Problems 996<br/><br/>APPENDIX 1 References A1<br/><br/>APPENDIX 2 Answers to Selected Problems A4<br/><br/>APPENDIX 3 Auxiliary Material A51<br/><br/>A3.1 Formulas for Special Functions A51<br/><br/>A3.2 Partial Derivatives A57<br/><br/>A3.3 Sequences and Series A60<br/><br/>A3.4 Grad, Div, Curl, 2 in Curvilinear Coordinates A62<br/><br/>APPENDIX 4 Additional Proofs A65<br/><br/>APPENDIX 5 Tables A85<br/><br/>INDEX I1<br/><br/>PHOTO CREDITS P1<br/><br/>NEW TO THIS EDITION<br/>Revised Problem Sets: This edition includes an extensive revision of the problem sets, making them even more effective, useful, and up-to-date.<br/>Chapter Introductions: These have also been rewritten to be more accessible and helpful to students.<br/>Rewrites: Some material has been rewritten specifically to better help students draw conclusions and tackle more advanced material.<br/>Chapter Revisions: Many of the chapters in this edition have been rewritten entirely. Some have had material added, including but not limited to:<br/>Introduction of Euler’s Method in section 1.2<br/>Partial Derivatives on a Surface in section 9.6<br/>Introduction to the Heat Equation in section 12.5
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Engineering mathematics
General subdivision Mathematical physics
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://www.wiley.com/en-ie/Advanced+Engineering+Mathematics,+10th+Edition+International+Student+Version-p-9780470646137">https://www.wiley.com/en-ie/Advanced+Engineering+Mathematics,+10th+Edition+International+Student+Version-p-9780470646137</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Suppress in OPAC No
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Price effective from Koha item type
    Dewey Decimal Classification     Mzumbe University Main Campus Library Mzumbe University Main Campus Library 08/27/2017 Mark Solutions   510.2462 KRE 0081499 08/03/2022 1 08/03/2022 Book
    Dewey Decimal Classification     Mzumbe University Main Campus Library Mzumbe University Main Campus Library 08/27/2017 Mark Solutions   510.2462 KRE 0081500 08/03/2022 2 08/03/2022 Book
    Dewey Decimal Classification     Mzumbe University Main Campus Library Mzumbe University Main Campus Library 08/27/2017 Mark Solutions   510.2462 KRE 0081501 08/03/2022 3 08/03/2022 Book

Mzumbe University Library
©2022